
Tetrahedron Letters 45 (2004) 9461–9464

Tetrahedron
Letters
Kiliani on ketoses: branched carbohydrate building blocks
from DD-fructose and LL-sorbose
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Abstract—Protected branched sugar lactones are available via Kiliani-acetonation sequences on readily available ketoses such as DD-
fructose and LL-sorbose. In both cases, the readily crystallized diacetonides have a 2,3-cis-diol relationship in the product lactone. An
efficient double inversion of the configuration at C-4 and C-5 of the product from DD-fructose gives access to the formal Kiliani prod-
uct from LL-psicose. Branched carbohydrate lactones are likely to be of significant value as chirons for homochiral targets with func-
tionalized quaternary centres.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbohydrate building blocks provide a wide range of
starting materials for the enantiospecific synthesis of
highly functionalized homochiral targets.1 However,
there are few, if any,2 branched sugar chirons3 that are
easily available on a reasonable scale from cheap unpro-
tected carbohydrates.

Although extensive studies on the Kiliani ascension4

from an aldose to a higher sugar with a linear carbon
chain have been reported,5 the reaction on unprotected
ketoses6 (to provide branched sugars) has been little
investigated. The initial work by Kiliani on the reaction
of DD-fructose7 1 and LL-sorbose8 5 showed that the
branched acids were not conveniently crystallized; fur-
ther studies have been limited9,10 and no simple protect-
ing group chemistry of the crude products has been
hitherto described. Access to simply prepared protected
derivatives of branched Kiliani products would provide
a new family of carbohydrate scaffolds from the chiral
pool.

This letter provides experimental details for the synthe-
sis of the two branched sugar building blocks 2 and 6 by
the Kiliani reaction on DD-fructose 1 and LL-sorbose 5,
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respectively, followed by acetonation of crude reaction
mixtures (Scheme 1).

Although the yields of the two processes are moderate,
the low cost of the ketoses and the ease of crystallization
5 L-Sorbose
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of two of the products make this a practical procedure
for the generation of a series of protected branched su-
gar chirons. A short sequence from 2 involving a double
inversion at C-4 and C-5 allows access to 4, the formal
product from a Kiliani reaction on the inaccessible sugar
LL-psicose 3.
2. Synthesis

The Kiliani reaction of DD-fructose 1 with aqueous so-
dium cyanide afforded a crude mixture of the two epi-
meric lactones 7 and 12 together with their open chain
acids (Scheme 2). After the solvent had been removed,
the residue was extracted with acetone in the presence
of sulfuric acid to give a mixture that mainly consisted
of the two diacetonides 2 and 10. Although 2 and 10
are difficult to separate cleanly by flash chromatogra-
phy, it is easy to crystallize the diacetonide 2, derived
from 7, as the major product in 51% yield from the mix-
ture. A smaller amount of the diacetonide 10, derived
from the minor isomer 12, was isolated in 9% yield.

As a practical procedure, DD-fructose 1 (10.00g,
55.51mmol) and sodium cyanide (3.54g, 72.24mmol)
were stirred together in water (100mL) at room temper-
ature for 24h. The reaction mixture was then refluxed
until evolution of ammonia had ceased (approx 12h).
The mixture was allowed to cool at room temperature
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Scheme 2. Reagents and conditions: (i) NaCN, H2O; (ii) Me2CO, H2SO4, C

H2O; (vi) TBDMSOSO2CF3, 2,6-lutidine, CH2Cl2; (vii) TBDMSCl, pyridine,

(ix) DIBAL-H, THF; (x) Br2, BaCO3, H2O, dioxane.
and then passed through a column of Amberlite IR-
120 H+ form and the solvent evaporated. Acetone
(150mL), concentrated sulfuric acid (2.5mL) and anhy-
drous copper sulfate were added to the residue, and the
resulting mixture was stirred at room temperature. After
6h, TLC (ethyl acetate/cyclohexane 1:1) indicated the
formation of a major product (Rf 0.28) and a minor
one (Rf 0.31). The mixture was then neutralized with
solid sodium carbonate, filtered and the solvent evapo-
rated. The residue was shaken with dichloromethane
(100mL) and water (100mL) and the aqueous layer
was further extracted with dichloromethane
(2 · 50mL). The combined organic extracts were dried
(magnesium sulfate), filtered and evaporated to produce
a mixture which was purified by flash chromatography
(ethyl acetate/cyclohexane 1:1) and crystallization of
the impure fractions from ether/hexane, to yield 211

(8.19g, 51% yield) as a white crystalline solid. A minor
product 1012 (1.44g, 9%) was also recrystallized from
ether/hexane.

The structure of 10 was firmly established by X-ray cryst-
allographic analysis13 of the corresponding silyl ether
11, {mp 76–78 �C, ½a�21D +46.0 (c, 0.42)14} formed by
treatment of 10 with tert-butyldimethyl (TBDMS) tri-
flate in dichloromethane in the presence of 2,6-lutidine.

A beautiful series of papers by Ho exploited the crossed
aldol reactions of 2,3-O-isopropylidene protected sugars
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with formaldehyde.15 Thus, an identical sample of 2 was
also prepared from diacetone mannose 916 by an initial
aldol condensation with aqueous formaldehyde to give 8
[52% yield]; subsequent oxidation of the lactol 8 with
bromine water gave 2 mp 130–132 �C, ½a�21D +34.7 (c,
1.0) in 86% yield. However, the direct Kiliani procedure
appears to be easily scalable, requires less effort and is
completed at a small fraction of the cost of starting from
DD-mannose.

Some chemistry of the diacetonide 2 was explored. Mild
acid hydrolysis of 2 by aqueous acetic acid gave the
monoacetonide 13 in quantitative yield {mp 128–
132 �C, ½a�24D +64.4 (c, 0.93, MeOH)}. Treatment of 13
with TBDMS chloride in DMF in the presence of pyri-
dine gave the disilyl ether 14 [73% yield, oil, ½a�21D +36.5
(c, 1.26)]. The disilyl ether 14 was treated with triflic
anhydride in dichloromethane in the presence of pyri-
dine to give the corresponding triflate which, when trea-
ted with potassium hydroxide in aqueous dioxane,
afforded the alcohol 4 (½a�21D +13.5 (c, 0.73), oil)—formed
by double inversion at C-5 and C-4—in 58% yield. The
structure of the LL-allono-lactone 4, the formal product
from a Kiliani sequence from LL-psicose 3, was firmly
established by X-ray crystallographic analysis of a
derivative.17

The Kiliani reaction on LL-sorbose 5 to give the lactones
15 and 16, with subsequent acetonation, was performed
identically to that described above for DD-fructose 1 to
the stage of the processing of the residue of the crude
mixture of diacetonides. Whereas for fructose 1 an ini-
tial flash column was necessary in the work-up, direct
crystallization of the residue from LL-sorbose allowed iso-
lation of the diacetonide 618 in 17% yield without chro-
matography; however, further work-up of the mixture
of the epimeric spiro-acetonides 1719 is difficult.20

The diacetonide 6 was also prepared from the diaceto-
nide of LL-gulonolactone 18.21 Reduction of 18 with di-
isobutylaluminium hydride (DIBAL-H) in THF gave
the corresponding lactol22,23 19 which underwent a
crossed aldol reaction with aqueous formaldehyde to
the branched gulose 20 mp 83–85 �C, ½a�26D +5.0 (c 0.73)
in 70% yield. Oxidation of the lactol 20 with bromine
in aqueous dioxane in the presence of barium carbonate
afforded the branched lactone 6 in 96% yield, identical in
all respects with the sample of 6 made from sorbose.
While the four-step route from LL-gulonolactone is effi-
cient, it competes neither in terms of cost nor time with
the procedure from LL-sorbose.
3. Conclusion

This letter provides an indication of the potential ease of
access to protected branched sugar chirons; both from
fructose and from sorbose easily crystallized branched
diacetonides can be isolated. Such carbohydrate build-
ing blocks are not restricted to those available from
the Kiliani-acetonation procedure on DD-fructose and LL-
sorbose. The Ferrier–Kiliani combination of microbial
oxidation of alditols combined with cyanohydrin forma-
tion and acetonation,24 and the microbial oxidation–en-
zyme catalyzed epimerizations reported by Izumori and
co-workers,25 may provide a powerful armory for the
synthesis of new densely functionalized homochiral
targets.
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